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In this paper the statistical properties of the mean passage time distribution are used to characterize the decay
process of non-Markovian rotating unstable processes driven by Gaussian colored noise and subjected to the
influence of a constant external force. The time characterization will be linear and studied in two limiting
cases: large and intermediate times. General systems of two variables are studied. In both schemes we show
that, for small correlation time of the noise, the non-Markovian effects are taken into account by an effective
noise intensity. To compare qualitatively the non-Markovian time scale with respect to the Markovian case, we
apply those results to determine the detection bandwidth of a large external signal in a laser system.
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In this Brief Report we extend the study of Ref.[1]. to the
case of non-Markovian characterization of the rotating un-
stable processes driven by Gaussian colored noise(GCN). In
the latter, the time characterization will be studied in two
limiting cases: large and intermediate times. Explicit results
are obtained in the quasi-Markovian approximation—i.e., for
small correlation time of the noise. The effects of this non-
Markovian contribution are taken into account through a res-
caling in the intensity of the noise. We consider that the
Markovian characterization of the rotating unstable processes
proposed in Ref.[1] has been well established and that it
provides the understanding of why the quasideterministic
(QD) approach works well in the time characterization of the
rotational laser system studied in Refs.[2–4]. Although the
nonlinear contributions have also been well characterized, in
this paper we only study the linear regime of the decay pro-
cess because in our theoretical description the stochastic
fluctuations are important at the initiation of such a decay
process. After this stochastic beginning the dynamics is prac-
tically deterministic and the noise plays no important role.
The non-Markovian character of the problem makes the
mathematics much more difficult to manipulate than that
worked out in the Markovian case; in fact, at the stochastic
beginning of the decay process the coupling between the
rotation parameter of the system and the correlation time of
the noise arises in a natural way. However, in the approxi-
mation of small correlation time, the mathematics is less
complicated and very similar to that given in Ref.[1]. The
matrices associated with the initial fluctuations, which in
general are not diagonal, satisfy the requirements of a diag-
onal matrix whose elements contain the non-Markovian ef-
fects through a rescaled noise intensity. Our theoretical re-
sults are applied to the laser system studied in Ref.[1] using
the same experimental data, and the qualitative comparison
between both time scales, Markovian and non-Markovian,
will be shown when they are used to determine the detection
bandwidth of an external large optical signal in the laser.

It is well known that during the 1970s and 1980s the
problem of calculating the mean first passage time(MFPT)

distribution for continuous Markovian and non-Markovian
processes was studied with great interest by several authors
for processes such as activation rates, mean lifetime of meta-
stable states, exit problems, optical bistability, and switch-on
processes in lasers, to mention some examples. In particular,
the problem of non-Markovian passage times can be found in
Refs.[5–16]; in some of them[5,6,9], the scheme of Brown-
ian motion was considered. At those dates, another time
scale, named nonlinear relaxation time(NLRT), was pro-
posed as an alternative method to characterize the transient
stochastic dynamics of unstable states taking into account the
dynamical evolution of the system from an initial unstable
state to the corresponding stationary state(saturation re-
gime). The study was also formulated for Markovian[17]
and non-Markovian[18] processes. In Ref.[16], the MPT
was used to characterize the decay of an unstable state driven
by GCN and compared with an analog simulation reported in
Ref. [19]. The proposal of Ref.[16] has motivated us to
extend the study of Ref.[1] to that situation in which the
internal fluctuations satisfy the properties of colored noise.
Our theory can stimulate to carry out the analog simulation
of the decay of rotating unstable systems triggered by col-
ored noise, as well as experiments in lasers, plasmas, or in
some other system in which fluctuation can be important. In
the case of the laser systems, we would like to make some
comments: In Refs.[2–4], the transient statistics, through the
MPT distribution, of a certain type of laser, was studied as-
suming that the spontaneous emission noise, also called
quantum noise, which models the internal fluctuations, satis-
fies the properties of Gaussian white noise(GWN). The va-
lidity of this model has been well established after a good
comparison with the experimental results[20] and numerical
simulation. However, in Ref.[21], experiments on the tran-
sient statistics of the growth of dye-laser radiation showed
the importance of the random fluctuations of a control pa-
rameter, also called the pump parameter, as well as of the
quantum noise in the time characterization of that laser ra-
diation. The theory proposed to explain the statistical prop-
erties of the growth of dye-laser radiation was given in Ref.
[22] assuming the properties of a colored noise for that con-
trol parameter. The theory was then compared with those
experimental results and the numerical simulation showing
good agreement. On the other hand, experiments in the tran-
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sient statistics of those laser systems which involve colored
quantum noise have not been reported yet. This paper sug-
gests experiments in that direction. We are looking at the
possibility to extend our proposal to the study of electron
diffusion in gases when both an electric and a magnetic field
is present.

Our study is developed in the linear approximation of the
nonlinear rotating unstable Langevin-type dynamics submit-
ted to the action of an external force, as that proposed in Ref.
[1]. In the space of coordinatesx it is written as ẋ=ax
+Wx+ fe+zstd and its corresponding transformed space of
coordinatesy, obtained by means of the change of variable
y=e−Wtx, reads

ẏ = ay + R−1stdfe + R−1stdzstd, s1d

wherea is real and positive, the matrixW is a real antisym-
metric matrix,Rstd is an orthogonal rotation matrix[1], fe is
the external force, andzstd is the fluctuating force whose
elementsjistd satisfy the property of Gaussian colored noise
with zero mean value and correlation function

kjistdj jst8dl =
Qij

t
di je

−ut−t8u/t, s2d

whereQij is the matrix which represents the noise intensity
andt the correlation time.

(a) The MPT for large times. Following Ref.[1], it is
shown in this limiting case that the QD approach tells us that
the random passage time required by the system to reach the
prescribed reference valueRe

2 is 2at=lnsRe
2/h2d whose statis-

tical moments can be calculated from the generating function
defined asGs2ald=ke−2altl or Gs2ald=ksRe

2/h2d−ll, h being
a Gaussian random variable. For two-variable systems and in
the approximation of small correlation time, we show that
the correlation matrix associated with the effective initial
conditions is diagonal with elementss12=s21=0 and s11
=s22=s2 such that s2=Q/as1+atd=Q8 /a where Q8
=Q/ s1+atd. So, in this limit of approximation, the rotation
parameterv of the matrixW is decoupled from the correla-
tion time and therefores2 is very similar to that obtained in
the GWN case if the noise intensityQ is rescaled by the
factor 1/s1+atd. In this case, both the MPT and its variance
are the same as those calculated in the GWN case except that
the noise intensityQ is replaced byQ8. Then, the MPT dis-
tribution is approximated by

k2atl = k2atst = 0dl + at, s3d

where k2atst=0dl=k2atl0−b2+b4/4 is the passage time in
the limit of GWN, k2atl0= lnsaRe

2/2Qd−cs1d is the MPT in
the absence of external force,cs1d is the Euler constant,
and b2=aufeu2/2Q8sa2+v2d. The variance is reduced to

ks2aDtd2l = c8s1d −
b4

2
. s4d

Both quantities—the MPT and its variance—correspond to
the case in which the decay process is dominated by the
small noise intensity and a small correlation time—that is,
bø1. In Fig. 1 we compare the MPT distributions3d, with

the numerical simulation for some values of the correlation
time. We appreciate the agreement between both results.

(b) The MPT for intermediate times. If the amplitude
of the external signal is greater than the intensity of the ef-
fective noise, thenb@1. In this case the QD in no longer
valid and therefore the second alternative approach proposed
in Ref. [1] must be used. Again, following the strategy of this
reference we calculate the elements of the correlation matrix.
In this case they are much more complicated than that cal-
culated in the GWN case. It can be shown after long algebra
that, for small correlation time, those elements can be ap-
proximated by

khistdhjstdl = khistdlkhjstdl +
Q8

a
s1 − e−2atddi j , s5d

whereQ8=Q/ s1+atd, which again defines an effective noise
intensity and therefore Eq.s5d is very similar as that given in
the GWN case. It coincides with the elementss11=s22 of
previous the previous section as the time goes to infinity.
Therefore, the MPT distribution will be

ktl = tp = t0 −
1

2a
lnf1 + fstpdg, s6d

with 2at0= lnfRe
2sa2+v2d / ufeu2g being the deterministic time

scale. For large amplitude of the external force—i.e.,b
@1—the variance is now

FIG. 1. Comparison between the time scale given by Eq.(3)
rescaled with the variable lns1/ed+t and numerical simulation for
the valuesufeu=Q;«, a=3.0, v=6.0, Re=1.0, and different values
of t. The simulation results correspond to values ofQ between 10−2

and 10−5. The straight line corresponds to theoretical results, Eq.
(3); white circles are the simulation results, fort=0, black squares
simulation results fort=0.1, stars fort=0.2, and black triangles for
t=0.3.
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ksDtd2l =
g2stpd

a2b2f1 + fstpdgF1 +
f8stpd

2as1 + fstpddG−2

, s7d

whereb2=aufeu2/2Q8sa2+v2d andfstd=fe−2at−2e−atcosvtg.
Clearly, the MPT distribution is dominated only by the
deterministic approximation and therefore does not de-
pend on the type of noise, whereas the variance contains
the non-Markovian contribution through the effective in-
tensity of noiseQ8. Finally the MPT and its variance are
calculated through the iterative proceduretp

s0d= t0 and
tp
sn+1d= t0−s1/2adlnf1+fstp

snddg.
In Figs. 2(a) and 2(b), we plot our analytical predictions

given by Eqs.(6) and(7) and the nonoscillating time scalet0,
and compare them with the numerical simulation of the laser
system studied in Ref.[1]. According to Refs.[1–4], the
control parameter(or pump parameter) of the laser system is
a=F−k, which is a constant quantity,F andk being the laser
parameters.

In Fig. 2(a), the MPT(6) is compared with both the de-
terministic time scalet0 and the numerical simulation for the
laser system. In Fig. 2(b), we plot some variances(jitters)
given by Eq.(7) for different values of the correlation time
and compare them with the numerical simulation of the laser
system. The straight(dashed) line is the deterministic ap-
proximation given byksDtd2l<1/b2 which is not oscillatory.
In this plot, to appreciate the non-Markovian effects, we
must consider the correlation time as a rescaled quantity
given by t /k, with t=1.0, t=2.0, andt=3.0 divided byk.

The comparison between the theory and the simulation re-
sults in both figures is excellent. In Fig. 3, we show a quali-
tative comparison between the time scales(3) and (6) when
both are used to determine the detection bandwidth of a large
injected signal in the laser studied in Ref.[1]. We use the
same criterion of that reference, which is defined as that for
which the limit of detection on the detuning reduces the ini-
tiation time to one-half of that corresponding to the off
state—i.e., when the external electric fieldEe=0. The detec-
tion bandwidth can be taken as the full width at half maxi-
mum (FWHM) of the plot in Fig. 3. Again, to appreciate the
non-Markovian effects we look at the rescaled valuet /k.
With the values oft=0.0,t=4.0,t=8.0, andt=12.0 we get
the respetive detection bandwidths of 20.6 MHz, 22.4 MHz,
23.3 MHz, and 24.5 MHz, approxiamtely. Therefore the de-
tection bandwidth is amplified as the correlation time in-
creases.

To conclude we can say that, in the quasi-Markovian ap-
proximation(small correlation time) and at the beginning of
the decay process in both limiting cases, the memory effects
of correlation time and the rotation parameter of the system
are decoupled from each other. This is shown in the diagonal
reduction of the correlation matrix associated with the initial
fluctuations, with the non-Markovian contribution taken into
account by an effective noise intensity. So when the dynam-
ics is dominated by the effective noiseQ8 no rotational ef-
fects can be appreciated and therefore the MPT distribution
appropriate to characterize this dynamical evolution is that
given by Eq.(3). It is compared with the numerical simula-
tion as shown in Fig. 1 for arbitrary values of the parameters,
showing excellent agreement between both results. If the

FIG. 2. (a) Linear mean passage time and(b) variance(jitter) as
a function of the rotation parameterv. (a) The dashed line is the
deterministic time scalet0, the solid line corresponds to Eq.(6) and
the symbols are the simulation results for some values oft. (b) The
straight dashed line is the variance(jitter) ksDtd2l<1/b2. The solid,
doted, short dashed, and long dashed curves correspond to the it-
eration of Eq.(7) for different values oft. The symbols are the
simulation results.

FIG. 3. The effects of the colored noise on the detection band-
width of a large external signal in a laser. The detection bandwidth
is taken as the FWHM of this plot. The curve is the third iteration of
Eq. (6). The horizontal lines are the one-half of the switch-on time
ktl0 given in Eq.(3) when Ee=0. The solid line is the Markovian
case fort=0. The non-Markovian effects are shown by the dotted,
short, and long dashed lines. The detection bandwidth is approxi-
mately 20.6 MHz fort=0, 22.4 MHz fort=4.0, 23.3 MHz fort
=8.0, and 24.5 MHz fort=12.0.
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intensity of the external force dominates over that of the
effective noise, the dynamics is rotational and practically de-
terministic. In this case the appropriate time characterization
is given by Eq. (6). The variance(7) contains the non-
Markovian effects through an effective noise. Finally the
time scales(3) and (6) employed to determine the detection

bandwidth of a large injected signal in a laser, used as a
prototype model, show that the colored internal noise ampli-
fies the detection bandwidth, as shown in Fig. 3.
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